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A B S T R A C T   

Nano-sized graphite was used as a dopant for fabrication of ZrB2–SiC ceramic via spark plasma sintering at 
1800 �C for 8 min under 35 MPa. As-sintered composite was characterized by XRD, SEM, EDS, STEM, TEM and 
nanoindentation in order to study the micro/nanostructure and mechanical properties of the sample. A near 
fully-dense ternary composite was obtained after densification process. In-situ formation of ZrC was attributed to 
the chemical reaction of graphite nano-flakes with ZrO2 nano-layers covered the surface of starting ZrB2 pow-
ders. Reactive role of graphite as an effective sintering aid, via removal of oxide impurities, was illustrated by 
TEM, as some ultrafine porosities were remained in the sintered bulk in graphite-free areas. The hardness and 
elastic modulus of the composite, obtained by the nanoindentation method, showed an excellent harmony with 
the reported data in the literature. The average hardness of 15.2, 18.3 and 10.7 GPa were achieved for ZrB2, SiC 
and ZrB2/SiC interface, respectively. Average Young’s moduli of matrix and reinforcement phases were 
measured as 328 and 306 GPa, respectively, which showed favorable adaption in mechanical properties of 
composite components. The nano-indentational characteristics of composite, especially pop-ins in the load- 
displacement curves, were also discussed.   

1. Introduction 

Ultrahigh temperature ceramic matrix composites (UHTCMC) 
comprising binary ZrB2–SiC [1–6] and ternary ZrB2–SiC–C [7] have an 
exceptional combination of characteristics such as high electrical and 
thermal conductivity, superior fracture toughness and bending strength 
as well as good thermal shock resistance. Previous research works have 
proved the positive effects of SiC and carbonaceous materials such as 
carbon black [8,9], carbon fiber [10,11], carbon nanotube [12], gra-
phene [13,14] and graphite [15,16] on densification and 
thermo-mechanical properties of ZrB2-based ceramic matrix composites. 

Nevertheless several brilliant reports [17,18] on successful 
machining of ZrB2–SiC composites to obtain near-net shape products, 
achieving complex geometry components made of such UHTC materials 
still evokes further investigations, mainly from economical point of 
view. Promising developments in UHTC manufacturing techniques have 

been recently published, which are focused on innovative reinforcing of 
the materials via combining new synthesis and sintering routes [19]. 

Spark plasma sintering (SPS) route is a modern densification meth-
odology for manufacturing through powder metallurgy approach 
[20–24]. In the SPS process, the energy needed for the consolidation of 
powder particles is supplied by an electrical field. Herein, similar to the 
hot pressing route, an external load has to be applied on the powder 
compact during the densification process. Anyway, SPS requires lower 
sintering temperatures and soaking times in comparison to the con-
ventional methods. Such a newly-developed sintering route has been 
successfully used for fabrication of UHTCs and their composites 
[24–31]. 

To the best of our understanding, there is no comprehensive report 
on the characterization of spark plasma sintered nano-graphite doped 
ZrB2–SiC ceramics, particularly, using the transmission electron micro-
scopy and nanoindentation methods. Therefore, a nano-scale approach 
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was used in this research work for characterization of ZrB2–SiC–graphite 
composite sintered by spark plasma at 1800 �C temperature under 
35 MPa pressure for 8 min dwell time. 

2. Processing and characterizations 

Available powders of zirconium diboride (particle size <2 μm, purity 
>99.8%) and silicon carbide (particle size <3 μm, purity >99.2%) as 
well as nano-flakes of graphite (thickness <100 nm, purity >99.5%) 
were purchased as raw materials from Chinese Xuzhou Hongwu com-
pany. The weights of starting materials were controlled to provide a 
mixture of ZrB2 as the matrix codoped with 25 vol% SiC and 5 wt% 
graphite. Wet mixing process was performed for 80 min in ethanol me-
dium inside an ultrasonic bath. The composite mixture of ZrB2–SiC–-
graphite was dried on a hot plate magnet and fully dehumidified in an 
oven. After loading the composite mixture in a graphite die, covered 
with BN and graphite foil, the sintering was completed in a vacuum 
spark plasma sintering (SPS) chamber (Nanozint 10i, Khala Poushan 
Felez Co., Iran) at 1800 �C for 8 min under 35 MPa pressure. After 
removing the graphite foils from the surface of sintered specimen by 
grinding, a pellet (thickness: 6 mm, diameter: 2.4 mm) was available for 
characterization. The graphite foil removal was initially performed via 
diamond grinding disk. After graphite removal and surface lapping, the 
sample was ground to 1-μm finish using diamond sand papers. An X-ray 

diffractometer (Bruker D8 Advance) was used for phase identification of 
the sintered sample. Microstructural characterization was carried out 
employing a field emission scanning electron microscope (Zeiss Ultra 
Plus) equipped with an energy dispersive spectroscope (Quantax 80) for 
chemical analysis. Nanostructural investigation was performed using a 
transmission electron microscope (Philips Tecnai F20) on the prepared 
sample by the focused ion beam (Gatan 601) method. 

Instrumented nano-indentation (Agilent G200, USA) was used to 
measure the mechanical properties of the achieved composite. Nano- 

Fig. 1. SEM micrograph and EDS spectra of ZrB2 and SiC phases in the as-sintered nanocomposite.  

Fig. 2. X-ray diffraction spectra of (a) as-mixed powders and (b) consolidated 
ZrB2–SiC–graphite ceramic. 

Fig. 3. SEM image and EDS spectrum of an in-situ formed ZrC phase at the 
interface of ZrB2 and graphite. 
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indentation tests were carried out at 25 �C using a Berkovich indenter at 
maximum load of 400 mN. The loading process prolonged 10 s and then 
the indenter was hold at the maximum load for extra 5 s. More details 
about nano-indentation test can be found elsewhere [32]. 

Corresponding load-displacement curves were then analyzed based of 
Oliver-Pharr (O&P) method [33] to calculate the hardness and elastic 
modulus of the composite components. The curves were also used to 
monitor the indentation response of each phase. For each distinct phase 

Fig. 4. STEM micrograph and EDS elemental maps of ZrB2–SiC–graphite ceramic showing the distribution of Zr, C and B elements.  

Fig. 5. TEM image of ZrB2–SiC–graphite ceramic prepared by the focused ion 
beam (FIB). 

Fig. 6. TEM nanograph of a submicron porosity in the ZrB2 matrix showing the 
presence of a nano-sized circumferential amorphous ZrO2 layer around 
the pore. 
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in the optical microstructure of the composite, at least 10 indents were 
applied and the average mechanical properties were calculated. 

3. Results and discussion 

Fig. 1 presents the SEM micrograph of the polished surface of as- 
sintered ZrB2–SiC–graphite nanocomposite. No obvious pore is 
observed in this image which can address the complete densification 
during the SPS process. The light-colored grains, as the major phase in 
this figure, belong to the ZrB2 matrix. The dark-colored phases with 
distinct boundaries are SiC grains but those with pallid interfaces are 
graphite nano-flakes, which have been picked up during the polishing 
due to their intrinsic softness, or may be carbon-induced new phases. A 
phase analysis by XRD can be helpful for characterization of such in-situ 
formed phases. In addition, elemental analysis by EDS can also assist the 
identification process of different phases. In this regard, EDS analyses 

were carried out on two distinct points through the light and dark phases 
shown in Fig. 1. As it can be seen, only the peaks of zirconium and boron 
were detected for the light phase (marked by black arrow in Fig. 1) that 
is corresponded to the matrix of ZrB2. EDS pattern demonstrates that 
only the peaks of silicon and carbon were identifies in the dark phase 
(marked by white arrow in Fig. 1) which can be nominated as SiC 
additive. 

X-ray diffraction patterns of the as-mixed powders/flakes of the 
starting materials and the as-sintered ZrB2–SiC–graphite composite are 
presented in Fig. 2. As it can be seen in Fig. 2a, the diffraction peaks of all 
the employed raw materials are detectable in the spectrum of as- 
processed powder mixture. Only one peak of graphite was identified 
by XRD test due to its low content as the dopant. Fig. 2b shows the X-ray 
diffraction pattern of as-consolidated ZrB2–SiC–graphite composite. At 
the investigated range of 20�<2θ < 90�, most of the detected peaks 
belong to crystalline ZrB2, however, some peaks of SiC as well as one 
peak of graphite and one peak of ZrC were also identified. Detection of 
trace amounts of graphite together with the in-situ formed ZrC phase 
promotes the hypothesis of partial reaction between graphite and the 
surface impurity of ZrO2. However, some graphite nano-flakes were 
remained unreacted in the as-sintered composite. In-situ formation of 
new carbides due to chemical reaction of carbon dopants with the sur-
face oxides of non-oxide ceramics, was previously reported in many 
research and review papers [7,9–11,34,35]. However, it has been re-
ported that graphene shows non-reactive behavior during the SPS of 
ZrB2–SiC-based composites [13]. It seems that the intensity of graphite 
peak in the sintered composite (Fig. 2b) is somehow lower than that in 
the powder mixture (Fig. 2a), may be as a result of its consumption 
during the synthesis of the ZrC phase. 

A high-magnification SEM micrograph of the as-sintered nano-
composite is shown in Fig. 3a. An EDS analysis was captured from the 
gray-colored phase, indicated by a square, which seems to be different 
from the main ZrB2 and SiC grains. The result of chemical analysis is 
presented in Fig. 3b which verifies the high concentrations of carbon and 
zirconium elements in such area. Hence, it can be nominated as the in- 
situ formed ZrC phase which is previously detected through XRD anal-
ysis. The location of such new formed phase is microstructurally logical, 
because it can be supposed that the graphite flakes, located between two 
ZrB2 particles, are potentially capable to participate in chemical re-
actions with the surface oxides of the matrix and convert to the ZrC. 

The presence of carbonaceous dopant in the form elemental graphite 
and/or new formed ZrC compound after sintering process, can be well- 
clarified through STEM investigation. Therefore, the STEM images of 
ZrB2–SiC–graphite nanocomposite as well as the EDS elemental maps of 
zirconium, boron and carbon are shown in Fig. 4. Based on these out-
comes, the darkest grains (marked by arrows) can be related to the 
remained graphite flakes and the relatively pallid areas may be attrib-
uted to the in-situ formed ZrC phases. The distribution maps of zirco-
nium and boron verify the light-gray-colored background as the ZrB2 
matrix. 

Fig. 5 shows an TEM image of ZrB2–SiC–graphite composite which 
has been prepared by the focused ion beam for micro/nanostructural 
studies. It seems that the sintering of this composite is well-progressed 
because the grains have fittingly joined together (distinct grain bound-
aries). Not only there is no large-sized porosity in the sintered structure, 
but also no evidence of grain coarsening during the consolidation pro-
cess can be found. Such an excellent sinterability in this UHTC com-
posite can be attributed to both constructive effects of nano-graphite 
addition and employing the SPS as a modern densification route, as SPS 
mainly deals with evaporation and consolidation of the sintering ma-
terial, rather than diffusion phenomenon (grain growth promotion). 

As it can be obviously seen in Fig. 5 and addressed before, the 
excellent connections between the grains which are manifested as clear 
interfaces during the SPS process, can be attributed to the performance 
of high-temperature spark plasma. In other words, most of the surface 
oxide impurities (e.g. SiO2, B2O3 and ZrO2) may be removed quickly by 

Fig. 7. TEM micrograph showing the interfaces of ZrB2 and SiC grains and 
remaining of few submicron pores in the sintered ceramic composite. 

Fig. 8. TEM image showing a submicron graphite between the ZrB2 and 
SiC grains. 
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such a phenomenon. Anyway, it seems that few porosities have been 
remained in the final structure of as-sintered sample, especially in the 
areas where are not grafted to the graphite nano-flakes as carbon source. 
For example, an ultrafine porosity is seen in the TEM nanograph of 
ZrB2–SiC–graphite composite (Fig. 6). Such a submicron pore in the ZrB2 
matrix is covered by an amorphous ZrO2 nano-layer. It is comprehen-
sively reported that the presence of such oxide impurities hinders the 
sample to be fully densified. 

The presence of few submicron pores, e.g. at the interface of ZrB2 and 
SiC phases, is also observed in the TEM image of Fig. 7. Regarding to 
their location (mainly in triple junctions) and irregular morphology, 
such remained ultrafine porosities in the sintered composite are gener-
ally attributed to the harmful oxide impurities. Herein, similar to the 
negative role of ZrO2 on densification progress of ZrB2 ceramics, it seems 
that the SiO2 as the oxide film on the surface of SiC grain may also 
prevented the pores to be completely removed. 

Anyway, in comparison with pores marked in Fig. 7, the morphology 
of interfacial nano-pores (bubble-like) indicated by arrows in Fig. 6, 
invigorates the hypothesis suggesting simultaneous occurrence of 
liquid-phase and reactive sintering mechanisms. In other words, 
whereas graphite additive reductively reacts with surface ZrO2 and 
forms ZrC, CO and/or CO2 may be released as byproducts. Such gases 
although mainly escaped due to high vacuum of the SPS chamber, but 
can form nano-bubbles entrapped in the SiO2/B2O3 interfacial liquid 
phase surrounds ZrO2 surface nano-layers. 

The positive role of nano-graphite addition as a sintering aid for the 
densification evolution of spark plasma densified ZrB2–SiC ceramic is 
excellently presented in Fig. 8. The microstructure of sintered specimen 
is free of porosity as a result of graphite presence in that area. Ultrafine 
graphite nano-flakes, with submicron diameters, have been located at 
the ZrB2/SiC interface. Such graphite nano-flakes and/or probable in- 
situ formed ZrC phases around them have good connections with both 
ZrB2 and SiC grains. Such an impurity cleaning role of carbon additives 
which assists the porosity elimination, results in enhanced densification 
and sinterability in the non-oxide ceramics. 

Fig. 9 shows the TEM nanographs of ZrB2–SiC–graphite nano-
composite showing the graphite nano-flakes between the ZrB2 grains. 
The laminar morphology of graphite phases, like the graphene nano- 
platelets, is clearly seen in these figures. Such graphite nano-flakes not 
only joined excellently to the grains of ZrB2 matrix, but also assisted the 
ZrB2 particles to completely sinter together. It is observable that the 
clean boundaries were formed between the grains of matrix phase as a 
result of oxide elimination by carbon additive. Moreover, the in-situ 
formation of secondary phases seems to enhance the sinterability via 
supplying a better condition for the grains to be joined together. 

Load-displacement curves of ZrB2 and SiC phases obtained from 

instrumented nano-indentation are representatively shown in Fig. 10. 
Comparison the indentation response of the phases, nano-indents were 
independently applied on ZrB2 grains, SiC grains and ZrB2/SiC interface. 
The average hardness and Young’s modulus of each phase are also 
presented in Table 1. 

As it can be clearly seen in Fig. 10a, besides the smooth load- 
displacement curves (1, 2 and 4), a pop-in is observed in curve 3. 
Such a load-displacement curve belongs to the lowest measured hard-
ness (10 GPa) and Young’s modulus (257 GPa) of ZrB2 phase. The pop-in 
phenomenon in nanoindentation response of zirconium diboride is 
previously well-described by several brilliant published research works 
[36–39], and can be attributed to dislocation movement and/or nucle-
ation, when the grain is randomly oriented in situation that provides 
minimum angle (θ ¼ 0) between applied tension and principle axis of 
ZrB2 hexagonal monocrystal. In other word, the basal plane (perpen-
dicular to the principle axis) encounters the maximum applied load, 
which promotes dislocation movement/nucleation on this plane. 
Therefore, nevertheless its fully-brittle nature, ZrB2 seems to show 
semi-plastic behavior in nano-scale, particularly when the indentation 
stress applied on the basal planes. Such a nano-scale plastic behavior of 
zirconium diboride has previously reported as an interfacial densifica-
tion mechanism during the hot pressing of ZrB2-based composites [40]. 
The obtained mechanical properties of ZrB2 phase (see Table 1) are also 
well-adjusted with literatures [37–39], although may be somehow 
different with other ZrB2-based composites [41]. 

According to Fig. 10b, besides the calculated hardness and Young’s 
modulus of SiC phase which are in good adjustment with the literatures 
[42,43], pop-ins observed (marked in Fig. 10b) in both curves 1 (lowest 
measured hardness) and 4 (highest measured hardness). Anyway, 
whereas curve 1 deals with just one pop-in at about 225 mN load, two 
distinct pop-ins can be observed in curve 4 at load of 125 and 275 mN, 
respectively. Such a phenomenon is well-described by Matsumoto et al. 
[43] and the pop-in occurred in lower load is attributed to the phase 
transformation and burst of dislocations in SiC single crystals, if the load 
applied along the basal plans. At higher applied loads, cracking and local 
failure of the material play the dominant role in pop-in occurrence. 
Therefore, it can be concluded that the wide range (heterogeneous) 
distribution of measured hardness and Young’s modulus for both ZrB2 
and SiC phases may be due to randomly oriented grains in SPSed com-
posite, which may differently affect the contributing parameters of 
nano-indentational response, e.g. the angle between basal plans and 
applied load. 

The abovementioned discussions can be confirmed, if the load- 
displacement curves of the ZrB2/SiC interface (Fig. 10c) are taken into 
account. Although the minimum and average hardness and elastic 
modulus of the interface show meaningful decrease in comparison with 

Fig. 9. (a) TEM nanographs showing the graphite nano-flakes between the (a) two and (b) three ZrB2 grains.  
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those of ZrB2 and SiC phases, the shape of load-displacement curves 
presents both characteristics of the composite’s components. The 
respectively low hardness obtained of applied nano-indents on the 
interface, may be due to remained interfacial porosities and/or 
remained graphite flakes. Similarly, remained porosities and graphite 
flakes can be considered as the responsible for low interfacial elastic 
modulus. Anyway, the shape of load-displacement curves somehow re-
sembles the curves of SiC (curve 3 in Fig. 10c) in which, two distinct 

(lower and upper) pop-ins can be observed. It seems that SiC plays the 
dominant role in corresponding indent, which may be attributed to the 
location of the indenter tip. For instance, if the main part of projected 
area is located in SiC, the load-displacement curve will tend to that of 
silicon carbide. Conversely, if the indent projected area is mainly located 
in ZrB2 phase, the characteristics of the load-displacement will figure out 
the curves of zirconium diboride, as can be seen in curves 2 and 4 in 
Fig. 10c. 

Also, the interfacial phases such as remained graphite, zirconium 
dioxide and possible glassy phases may affect the shape of load- 
displacement curves at interfaces, based on the volume fraction of the 
phases and location of indenter tip. SEM/AFM-equipped instrumented 
nano-indentation test can result in more accurate results, as the location 
of indent can be precisely determined. The conclusive nano- 
indentational response of several phases in ZrB2–SiC–graphite compos-
ite is schematically presented in Fig. 11. 

4. Conclusions 

ZrB2–SiC–graphite nanocomposite was fabricated via SPS route at 
1800 �C for 8 min under 35 MPa. The micro/nanostructure of the as- 
sintered ceramic sample was characterized via SEM/STEM/TEM facil-
ities to determine the influence of nano-graphite dopant on the densi-
fication and sinterability of UHTC specimen. XRD and EDS analyses 
were also employed to verify the in-situ formation of secondary phases 
(such as ZrC) at the interface of graphite and main grains. Although few 
submicron porosities were identified via nanostructural investigations, 
the fabrication of a near fully-dense ZrB2-based composite was possible 
by the addition of nano-graphite. Reported observations were related to 
the positive role of graphite on elimination of surface oxide impurities. 
Although the measured properties were widely distributed the me-
chanical properties (hardness and elastic modulus) of the composite 
showed appropriate adjustment with the previous reports. The hardness 
of ZrB2 matrix was measured between the minimum of 10.0 and 
maximum of 24.8 GPa, whereas 8.4 and 29.6 GPa were calculated as 
minimum and maximum hardness for SiC reinforcement. Due discus-
sions and illustrations were dedicated to the nano-indentational char-
acteristics of the composite, particularly appeared pop-ins in load- 
displacement curves. 
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